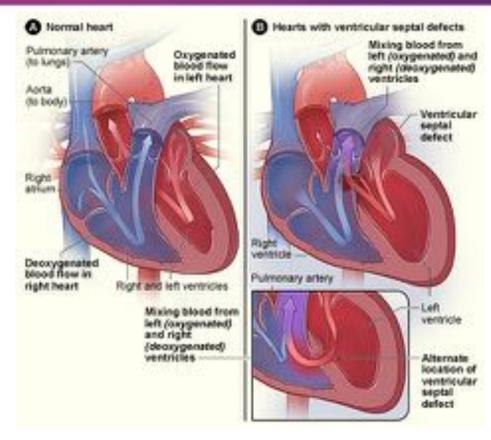


Solving the mysteries of cardiac physiology – Back to basics

Septal defects

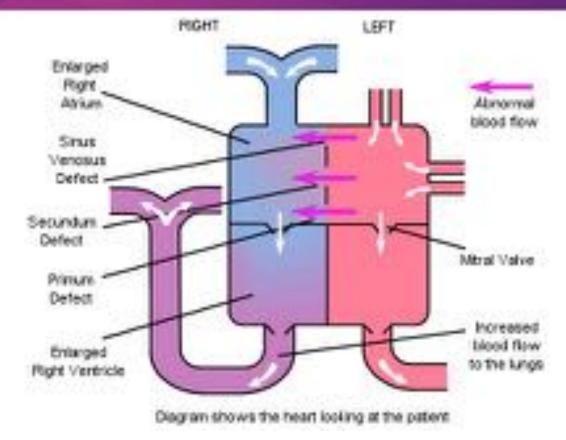
Panagiotis Xaplanteris, MD, PhD Interventional cardiologist CHU Saint-Pierre, Brussels, Belgium

PCRonline.com



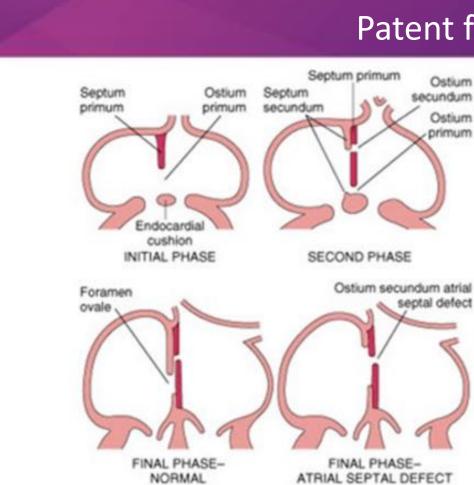
Speaker's name : Panagiotis Xaplanteris

 \blacksquare I do not have any potential conflict of interest to declare



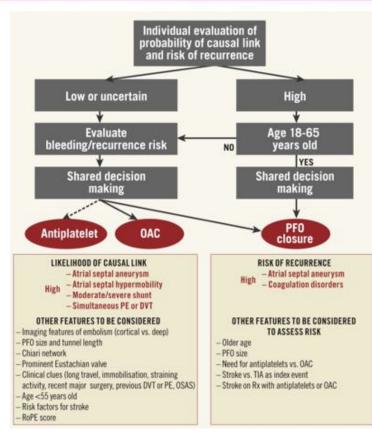
Ventricular septal defects

www.nhlbi.nih.gov/health-topics/congenital-heart-defects

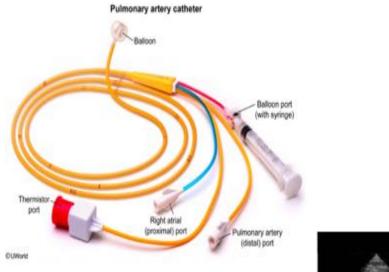

Atrial septal defects

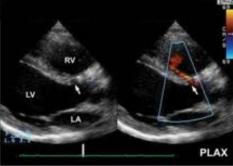
PCR

2019


Patent foramen ovale

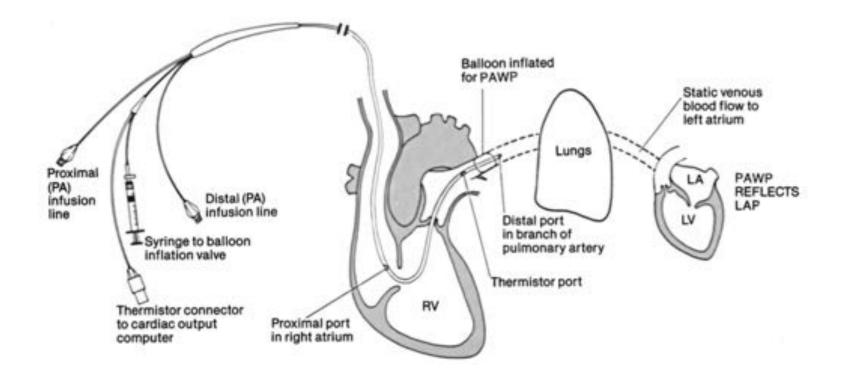
Patent foramen ovale



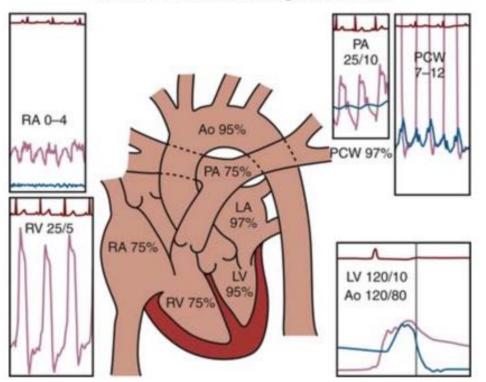


European position paper on the management of patients with PFO; EHJ 2018

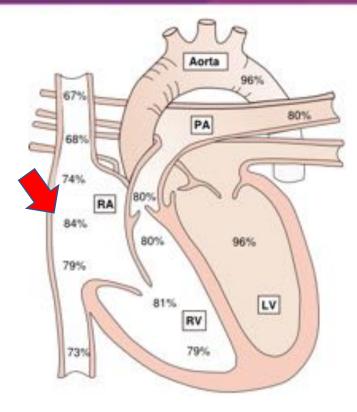
Shunt quantification



- Septal defects result in L to R shunts
- Right heart: increases in P and O₂ saturation
- Atrial and ventricular dilatation
- Long-standing large defects may result in shunt reversal (R to L; Eisenmenger's physiology -> cyanosis)
- Imaging vs cardiac catheterization

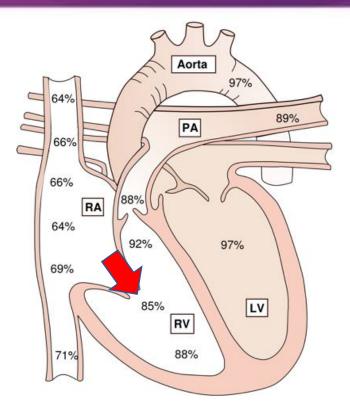


L D. Kersten, Comprehensive Respiratory Nursing: A Decision Making Approach, Saunders 1989

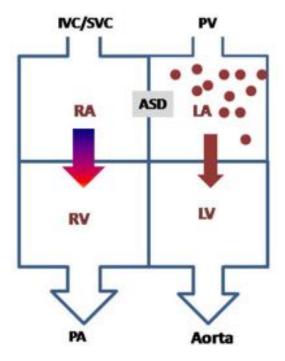

Oximetry run

NORMAL PRESSURES AND O2 SATURATIONS

- A step up in O₂ saturation of 5-7% is considered significant
- The L to R shunt should be localized
- A full oximetry run can include up to 9 blood samples (IVC, SVC, low/mid/high RA, RV, PA, PCW, LV)
- Advantages / disadvantages

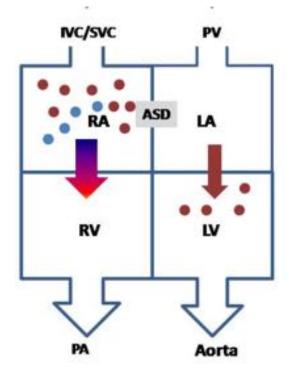

Oximetry run for shunt detection

euro


PCR

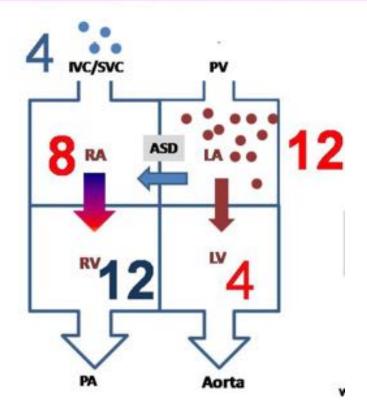
'step up' detected in the RA -> ASD

'step up' detected in the RV -> VSD www.pcipedia.org



$$\mathbf{Qp:Qs} = \frac{Pulmonary\ flow}{Aortic\ flow}$$

$$\mathbf{Qp:Qs} = \frac{Shunt\,flow + aortic\,flow}{aortic\,flow}$$



$$\mathbf{Qp:Qs} = \frac{Pulmonary\ flow}{Aortic\ flow}$$

$$\mathbf{Qp:Qs} = \frac{Shunt\,flow + aortic\,flow}{aortic\,flow}$$

$$\mathbf{Qp:Qs} = \frac{Pulmonary\ flow}{Aortic\ flow}$$

$$\mathbf{Qp:Qs} = \frac{Shunt\,flow+aortic\,flow}{aortic\,flow}$$

L->R shuntQp:Qs >1R->L shuntQp:Qs <1</td>

$$\mathbf{Qp:Qs} = (SaO_2 - SvO_2) / (PvO_2 - PaO_2)$$

SaO₂ Systemic arterial O₂ saturation
SvO₂ Mixed venous O₂ saturation
PvO₂ Pulmonary vein O₂ saturation
PaO₂ Pulmonary artery O₂ saturation

 $SvO_2 = (3 \times SVC \text{ sat} + 1 \times IVC \text{ sat}) / 4$ $PvO_2 \sim Wedge \text{ saturation}$

 PaO_2)

O2 saturations:

IVC	82%	SaO ₂ = 97.5		
SVC	70%	SvO ₂ = (3xSVC + 1xSVC) / 4 = 73		
RA	85%	PvO ₂ = 97.5 (~ Wedge)		
PA	88%	$PaO_{2} = 88$		
RV	84.5%			
Wedge	98.5%	$Qp:Qs = (SaO_2 - SvO_2) / (PvO_2 - SvO_2)$		
LV	97.5%	= (97.5 - 73) / (97.5 - 88)		
LA	97%	- (37.3 - 75) / (37.5 - 88)		

= 2.57

Indications	Class	Level ^b
Patients with significant shunt (signs of RV volume overload) and PVR <5 WU should undergo ASD closure regardless of symptoms	Ē	B ²⁶
Device closure is the method of choice for secundum ASD closure when applicable	Î.	с
All ASDs regardless of size in patients with suspicion of paradoxical embolism (exclusion of other causes) should be considered for intervention	lla	с
Patients with PVR ≥5 WU but <2/3 SVR or PAP <2/3 systemic pressure (baseline or when challenged with vasodilators, preferably nitric oxide, or after targeted PAH therapy) and evidence of net L–R shunt (Qp:Qs >1.5) may be considered for intervention	Ш	c
ASD closure must be avoided in patients with Eisenmenger physiology	ш	с

euro

PCR

2010 ESC guidelines for the management of grown-up congenital heart disease

Indications for VSD closure

Indications	Class	LeveP	Indications	Class	Level
ients with symptoms that can be attributed L-R shunting through the (residual) VSD and o have no severe pulmonary vascular disease e below) should undergo surgical VSD closure		lla	с		
Asymptomatic patients with evidence of LV volume overload attributable to the VSD should	ŧ	c	when challenged with vasodilators, preferably nitric oxide, or after targeted PAH therapy))	
undergo surgical VSD closure			Surgery must be avoided in Eisenmenger VSD	ш	c
Patients with a history of IE should be considered for surgical VSD closure	lla	c	and when exercise-induced desaturation is present		
Patients with VSD-associated prolapse of an aortic valve cusp causing progressive AR should be considered for surgery		c	If the VSD is small, not subarterial, does not lead to LV volume overload or pulmonary hypertension, and if there is no history of IE, surgery should be avoided	ш	c

Percutaneous closure of septal defects

PCR

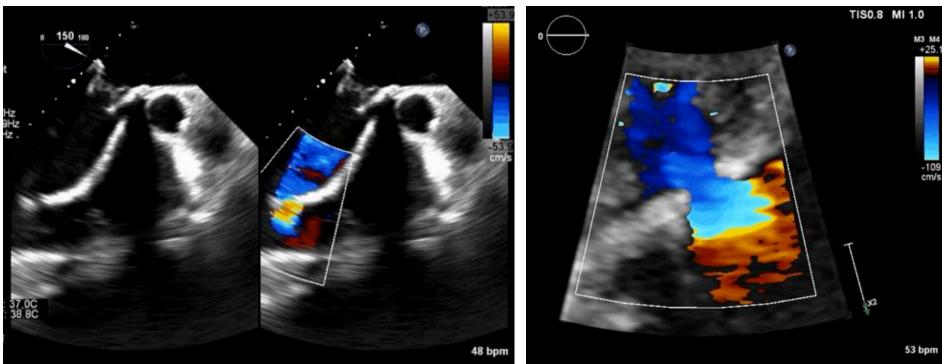
Not all defects amenable to closure Size Number of defects Concomitant cardiac pathologies Rims Adjacent anatomical structures

VSD closure

Clinical history

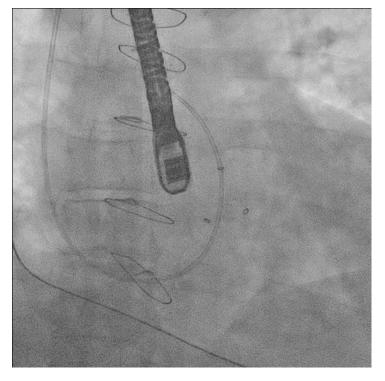
- 62 y.o. male referred for dyspnea
- 2014: inferior STEMI -> pPCI @ RCA
- Subsequent papillary muscle rupture and VSD -> surgical MVR and patch
- Residual VSD and Qp:Qs = 2.0
- Mean pressure gradient across the MV prosthesis = 10 mm Hg
- Decision for percutaneous VSD closure

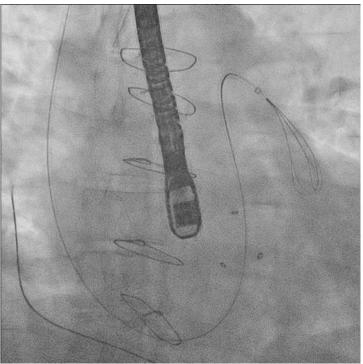
VSD closure


Equipment

- Right jugular vein : 7F sheath
- Right femoral artery: 6F sheath
- Hydrophilic guidewire 0.035" 300cm
- Endovascular snare system EN Snare 18-30 mm
- VSD occluder Occlutech mVSD 12-19mm

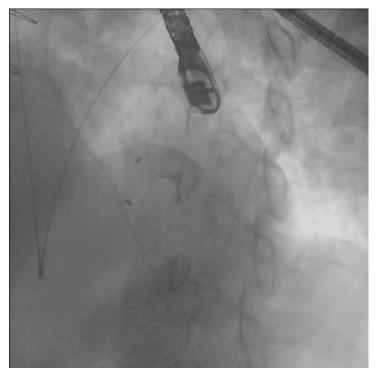
Transesophageal echo

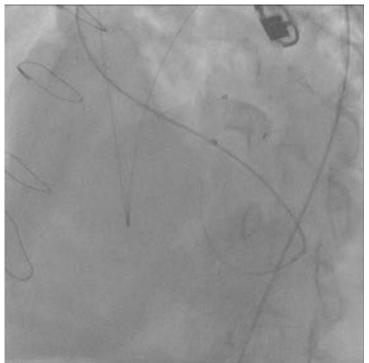



Images courtesy of Dr de Hemptinne, CHU Saint-Pierre, Brussels, Belgium

VSD closure

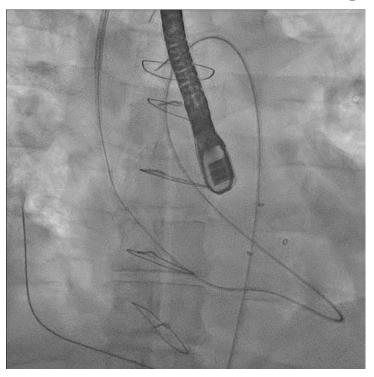
Snare system




Images courtesy of Dr de Hemptinne, CHU Saint-Pierre, Brussels, Belgium

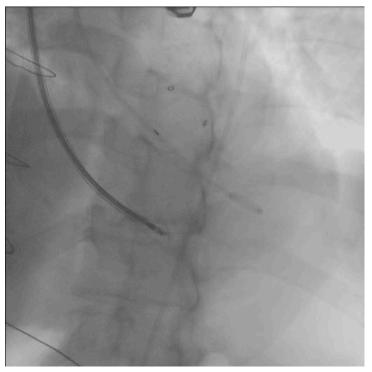
VSD closure

VSD crossing



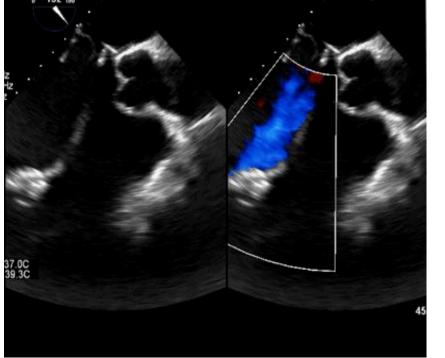
Images courtesy of Dr de Hemptinne, CHU Saint-Pierre, Brussels, Belgium

Wire snaring and device deployment



Images courtesy of Dr de Hemptinne, CHU Saint-Pierre, Brussels, Belgium

Device deployment and release



Images courtesy of Dr de Hemptinne, CHU Saint-Pierre, Brussels, Belgium

VSD closure

Final result

Images courtesy of Dr de Hemptinne, CHU Saint-Pierre, Brussels, Belgium

Septal defects include PFOs, ASDs and VSDs

PFOs are the most common defect (present in ~25% of adults)

Main indications for closure

PFO: cryptogenic stroke

ASD, VSD: large L->R shunt

Cardiac catheterisation for pressures, Qp:Qs

Closure contraindicated in Eisenmenger's cases

euro PCR

Backup slides

Oximetry disadvantages

- Lacks sensitivity small shunts can not be detected
- Steady state for blood sampling
- Mixed venous saturation is an approximation; influenced by CO
- Dependance on Hb concentration
- Valvular regurgitation (MR, TR) blurs results

Finetuning oximetry

• Blood sampling should be rapid

• Consider multiple samples and calculate average saturations

• If cardiac output at rest is low, make the patient exercise

 If supplemental O₂ is administered, the dissolved O₂ should also be considered